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Abstract 

In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In 

that case the detonation only releases about 30 % of the available energy, but generates a hot cloud of 
fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in 

space and time. The current series of small-scale experiments can be looked upon as a natural 
generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing 

with air and,,by means of the hot detonation products, the energy to ignite the fuel. 

The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical 

booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm-, which is 
filled with powdered fuel compositions. The main compositions studied up to now contain aluminum 

flakes, hydrocarbon powders like polyethylene or hexosen (sucrose) and/or carbon particles. These 

charges were studied in four different chambers: two cylindrical vessels of 6.6-1 and 40.5-1 volume 

with a height-to-diameter ratio of approximately 1, a rectangular chamber of 4 1 (10.5 x 10.5 x 38.6 

cm-) and a 299.6 cm long tunnel model with a cross section of 8 x 8 cm- (volume 19.2 1) closed at 

both ends. 

In the three smaller chambers the primary blast front arrives at all sidewalls within a short period 

(order of magnitude 100 p s )  after the detonation and sets upon blast reverberations at 
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correspondingly high frequencies. Depending on the volume, they thus limit the overall expansion 
(cooling) of the hot detonation products and the dispersed fuel cloud and provide an efficient stirring 

mechanism that mixes the fuel with ambient air. Fuel combustion manifests itself as a time-dependent 

increase of the quasi-static overpressure underlying the shock structure seen in recordings from wall 

pressure gages. For example, detonation of the bare booster of 0.5 g PETN creates a quasi-static 

overpressure of about 2.1 bar in the 6.6-1 cylindrical bomb vessel, while an SDF-charge containing 1 

g of aluminum flakes generates an overpressure of 9.2 bar. This level is obtained in less than 1.5 ms 

and indications of the additional energy release become noticeable as early as 200 p s  after the 
detonation. The experimentally observed pressure level of 9.2 bar is close to a theoretical estimate of 

9.7 bar. The estimate is based on a thermodynamic equilibrium calculation that yields the constant- 
volume explosion state of an adiabatic system containing the appropriate amounts of PETN, 

aluminum and air. This indicates fairly complete combustion of the aluminum in the 6.6-1 vessel. 

Other fuel compositions exhibit lower burning rates and less complete combustion. Also, going 

from the 6.6-1 volume to the 40.5-1 volume changes the dynamics: the increase of the quasi-static 

pressure is slower and the chances for incomplete combustion are larger. We assume this is due to the 

fact that the products cloud can expand further in the later vessel, thus cooling the products before the 
blast reflections and enhanced mixing set in. This would mean that the confinement (Le., the fact that 

the charge is detonated in some sort of chamber along with its geometry) plays an important role in 

the performance of SDF-charges. 

In the closed tunnel different dynamics of the blast wave propagation evolve. In the tests the 

charge was located near one end of the tunnel at x = 1 D. Reflections from the sidewalls, the floor and 

the roof are of importance only close to the charge location (x < 7D). By the time the waves reach x - 
7D they coalesce into a unique, quasi-one-dimensional front. Also, the tunnel walls constrain the 

mixing of the fuel with air to be quasi-one-dimensional (along the tunnel axis). Thus the mixing is 

less efficient in a tunnel, while at the same time the detonation products/fuel cloud cools down more 

rapidly (via heat losses to the walls). 

Nevertheless, SDF-charges with aluminum flakes did generate additional energy release (in excess 

of the booster) in the tunnel. With the charge detonated close to one tunnel end, it takes the blast front 

about 4 ms to propagate to the other end of the current model. In this period combustion released 
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energy initially generated additional pressure that filled in the decay of the blast wave and thus 
increased the positive overpressure impulse. Less than halfway down the tunnel the effects from the 

additional energy release even catch up to the front of the blast and cause an enhanced peak pressure 
versus range. At the end of the initial 4-ms period the SDF-charge with 1 g aluminum flakes appeared 

to be as efficient as a charge of about 1.4 g TNT in terms of the peak pressure and as efficient as a 

charge of 1.7 g TNT in terms of the positive overpressure impulse. This efficiency however, though 

proving at least partial combustion of the aluminum flakes, is below what one would expect from a 
comparison of the heat of combustion of the charges. 

In summary, non-explosive fuel can be dispersed and ignited by a single booster charge. On the 

one hand the time-scale and the yield of the pressure effects depend on the fuel and its characteristics, 

like composition and particle size and geometry. On the other hand a confinement seems necessary to 

take advantage of the combustion energy; time-scale and yield thus also depend on the flow dynamics 

in the chamber and in consequence on the chamber geometry and volume. For optimum 

performance the cooling rate of the detonation products / fuel cloud and the mixing with ambient air 

have to be well balanced. 

Figures 

Figure I Schematic sketch of the SDF charge design (left) and photographs of a 
charge and its components (right). 
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Figure 2 Overpressure vs. time in the cylindrical 6.6-1 vessel for three charges: the bare booster 
(0.5 g PETN), a composite charge (a core of 0.5 g PETN, a solid outer shell of I g 
TNT) and the SDF charge containing I g Al-flakes. The records are low-pass filtered 
for readability. At a cut-off frequency of 2 kHz remainders of the shock reverberation 
structure are still visible, a cut-off of 0 5  kHz smoothes these oscillations, but falsifies 
the initial pressure rise rate. Included in this figure are theoretical pressures levels 
based on a thermodynamic equilibrium calculation 
of the constant-volume explosion state (green lines). 
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Figure 3 Peak pressure vs. range in the 3-m long tunnel model for the booster and the SDF 
charge containing Al-flakes. 


